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ABSTRACT
Donepezil and Galanin Interactions in an Animal Model of Alzheimer’s Dsease
by
Jonathan Jacob Sabbagh
Dr. Jefferson Kinney, Examination Committee Chair
Assistant Professor of Psychology
University of Nevada, Las Vegas
Alzheimer’s disease (AD) is a neurodegenerative disorder marked by a
progressive loss of cognitive function. One of the neurobiological hallmarks of AD is a
progressive loss of cholinergic neurons and a decrease in the amount of acetyilcholine
the brain. Pharmacological therapies have targeted the cholinergic sysemifically
first-line, palliative treatment using acetylcholinesterase (AChikpitors, such as
donepezil. Donepezil has been shown to increase cholinergic tone and ameliorate some of
the cognitive deficits in AD patients. Galanin, a neuropeptide that inhibits thedevoke
release of several neurotransmitters including acetylcholine aaswelbdulates seveal
intracellular cascades, is overexpressed in AD resulting in an as gentified
modulation of neurobiological function. Galanin also impairs learning and memory whe
administered centrally to rodents, suggesting it may contribute to the gegniti
impairments observed in AD. While the mechanism by which galanin impairsigarni
has yet to be determined, studies suggest it is through cholinergic mechaisms
investigated the ability of donepezil to rescue learning and memory defahitsed by
galanin administration, and by extension isolated whether the learningnmepés
produced by galanin were ameliorated by increasing cholinergic tones@/e al

investigated the effects of donepezil and galanin in an animal model of AD, i.e. their
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effects on learning and memory following a slight lesion of cholinergicomes
analogous to the cholinergic loss seen in AD. This study provides vital infomaddout
the relationship between galanin-induced deficits and acetylcholine, geitbelarify

the roles of donepezil and galanin in AD.
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CHAPTER 1
INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder characteyized b
progressive loss of memory and a decline in cognitive function (Heese & Akatsu, 2006).
It is the most common cause of age-related dementia accounting for 50-6086 of ag
related cases. The average age of onset for AD is 65 years, while mostccasesgp
before this age are referred to as early-onset familial AD, with iddnéfgenetic links.
Other symptoms accompanying the memory loss are confusion, disorientatiety,anxi
delusions and apathy or depression (Terry & Katzman, 1983). As the disease gdvances
symptoms may include anger, aggression, language problems, and impaired motor
function (Souren et al., 1995; Waldemar et al., 2007). In addition to the behavioral
disruptions associated with AD, several pathological changes have been obséneed i
brain including beta-amyloid (# plaque deposition, neurofibrillary tangle formation,
and the progressive loss of cholinergic neurons (Bartus et al., 1982; Glennerg& Won
1984; Masters et al., 1985; Arriagada et al., 1992; Goedert, 1996). These pathological
changes are the hallmarks of the disease, and may be responsible for ttieecagyghi
behavioral deficits exhibited in AD.

One of the most extensively investigated hallmarks of the disorder is the senil
plaques observed in post mortem examinatiofisprdteins form the core of senile
plaques, one of the pathological changes which may be inducing the neuronaass se
AD (Glenner & Wong, 1984; Masters et al., 1985). Senile plaques are extracellula
structures composed mainly of aggregat@dand they are seen almost exclusively in

AD and AD-related pathologies like Down syndrome (Wisniewski et al., 1985)rebeve
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studies suggest that the accumulation pfiAthe brain may initiate or lead to the
pathogenesis of AD (Selkoe, 2001). These findings and others have led to the amyloid
cascade hypothesis (Hardy & Higgins, 1992), which suggests that the amylogitsle
that form plaques are the causative event in AD and the resulting neurodegengiati
by-product of this buildup. Evidence supporting this hypothesis comes from genetic
studies showing mutations in the genes associated with familial and tteAdn lead to
increased B aggregation and cognitive deficits (Goate et al., 1991; Murrell et al., 1991,
Corder et al., 1993; Levy-Lahad et al., 1995; Sherrington et al., 1995).

Investigators have been searching for genetic ties to AD for yearsattempt to
determine the etiology of the disease but with only mild success. Althoughgefes
have been implicated as risk factors, none have yet provided a clear link between the
pathogenesis of AD and specific genetic targets, with most promisingstéiegkto
familial AD. Mutations in the amyloid precursor protein (APP), which is resplentor
the formation of & peptides and whose encoding gene is located on chromosome 21,
have been linked to early-onset familial AD (Goate et al., 1991; Murrell et al.).1991
Also, patients with Down syndrome, a trisomy (additional copy) of chromosome 21,
show AD pathology by 40 years of age (Holtzman et al., 1996). Alternativa@enet
approaches have implicated mutations in genes called presenilins (PShaveciiso
been tied to early-onset AD, specifically presenilin-1 (PS-1) and pres2r(iPS-2)
located on chromosomes 14 and 1, respectively (Levy-Lahad et al., 1995; Sherrington et
al., 1995). In AD, genetic investigations have implicated a specific allele of
Apolipoprotein E (ApoE), whose gene is localized on chromosome 19, which has been

linked to an increased likelihood of developing the disease (Corder et al., 1993).
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Although genetic linkage studies have provided useful insight into potential AD gtiolog
genetic mutations related tg3Aan only account for a small percentage of AD cases. A
further limitation of the & hypothesis is that many studies have indicated that there is
little to no correlation between the number or size of amyloid deposits and the safverity
the dementia, and that other pathologies seem to correlate better with theyrnosshor
seen in AD (Terry et al., 1991; Arriagada et al., 1992). Therefore, additiohalqugies
such as the hyperphosphorylation of tau have been the focus of much research.
Neurofibrillary tangles (NFTs) are another neuropathological hatlimigAD and
are composed mainly of hyperphosphorylated tau, a protein that is associhted wit
microtubule stability and assembly. Tau hyperphosphorylation leads to theitoriat
paired helical filaments (PHF) which are thought to lead to microtubule djsatitan
and neuron death (Goedert, 1996). Because neurofibrillary pathology, as well as the
number of cortical tangles, correlates positively with the severity of deamemD
(Arriagada et al., 1992), it is of great interest to investigators of the dissoxdehose
developing pharmacological treatments. In addition, the regions of the brain theat appe
to undergo the greatest degeneration of neurons and synapses in AD are thosethat proj
to or from areas that have high densities of plaques and tangles, specheally
hippocampus, neocortex, and basal forebrain (for review, see Kar et al., 2004). The latte
region contains large numbers of cholinergic neurons which project to the hippocampus
and cortex. Acetylcholine (ACh), principally an excitatory neurotrariemis important
for attentional processes, as well as learning and memory (Deutsch, 1971; \&lenk et
1994; Woolf, 1996). A reduction in neurons containing ACh has been consistently

observed in AD, particularly in the early stages of the disorder.
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Cholinergic cell loss is a hallmark of the neurodegeneration in AD, marked by a
progressive loss of ACh-containing neurons with a corresponding decline in cognitive
function (Perry et al., 1981; Terry et al., 1991). The cholinergic hypothesis of AD
postulates that the cognitive deficits in AD are caused by the early lokslofergic
basal forebrain (CBF) neurons (Bartus et al., 1982). This hypothesis is supported by
many studies which demonstrate that the loss of CBF neurons occurs early seése di
progression, likely before a clinical diagnosis is reached (Bartus et al., 1@82nkt
al., 1982; Beach et al., 1997; Beach et al., 2000). Also, the severity of the dementia in AD
is highly correlated with the amount of cholinergic loss (Perry et al., 1981helfmore,
the first drugs to be developed for AD have targeted the cholinergic system wit
moderate effectiveness. Donepezil, the first FDA-approved drug for AD amthals
most widely prescribed, has shown to be effective at ameliorating behavioggbsys
associated with learning and memory in the early stages of the diBeagss et al.,

2000). Donepezil is an acetylcholinesterase (AChE) inhibitor, effectiedlycing the

extent of the breakdown of ACh and increasing the available amount of ACh at the
synapse (Sugimoto et al., 1990). It has long been thought that AChE inhibitors only have
the ability to alleviate the symptoms of AD, but recent studies suggest theyan®y h
disease-modifying effects as well (Sabbagh et al., 2006). One possible g&plasdo

why these CBF neurons are dying is related to calcium levels and exaiyt@xiucas &
Newhouse, 1957).

Excitotoxicity results from the overload or overabundance of calciumnons
neurons, and can be caused by the excessive activation of several receptorgyincludi

glutamate receptors (Lucas & Newhouse, 1957). This excessive receptati@accan
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lead to a large and persistent influx of calcium into the cell which produces téno muc
excitation that can lead to cell death. Excitotoxicity has been tied to kevera
neurodegenerative disorders including Huntington’s disease, amyotrophat $aterosis
(ALS), and AD (Mattson et al., 1992; Taylor-Robinson et al., 1994; Cluskey & Ramsden,
2001). In AD specifically, increased calcium levels have been found in cells cogtaini
NFT and may even precede tangle formation (McKee et al., 1990). Furtherrfiore, A
production is increased as a result of calcium iniftumtro (Querfurth & Selkoe, 1994).
An endogenous neuropeptide that seems to be effective at reducing exctyotmdci
which has the capacity to protect neurons from overactivity (i.e. trophic pex)es
galanin (Cortes et al., 1990).

Galanin acts primarily as a neuromodulator in the central nervous s{Si¢8),
interacting with several neurotransmitters including ACh, serotonin (5-¢ditamate,
and norepinephrine (Dutar et al., 1989; Pieribone et al., 1995; Kinney et al., 1998; Xu et
al., 1998). Galanin is also overexpressed in AD, hyperinnervating surviving Giénse
at concentrations as high as twice that of age-matched controls (ChgniP&kx Beal
et al., 1990). When administered into the lateral ventricles or hippocampus of rodents,
galanin has been shown to impair reference and working memory in seaemnaigeand
memory tasks, including the Morris water task, T-maze delayed alterndgiayed non-
matching to position, starburst radial maze and trace fear conditioning ¢pkcty et
al., 1988; Robinson & Crawley, 1993; Ogren et al., 1996; Kinney et al., 2002; Kinney et
al., 2003). Based on these findings, it is possible that galanin is contributing to the
cognitive deficits observed in AD by inhibiting CBF neurons in an attemptve ser

neuroprotective role. One important question that has not been directly invessgated i
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whether galanin specifically modulating cholinergic tone may be responsiliteef

learning impairments above, which would have large implications for galaniB.in A

Research Questions

The present study investigated in experiment 1 if donepezil, the aforementioned
AChE inhibitor, was able to rescue any of the cognitive impairment induced byl centra
galanin administration consistent with other investigations. Becauserghks been
shown to inhibit cholinergic signaling (Fisone et al., 1987), donepezil may be able to
reverse the galanin-induced deficit by increasing cholinergic tonendpzil is able to
rescue the learning and memory deficits in the galanin-infused lanitman it suggests
that galanin may produce a deficit by modulating cholinergic mechanismsveiQuie
donepezil is unable to significantly rescue the galanin-induced dédfisitjkely the
learning and memory impairments produced by galanin are unrelated to its Soppréss
cholinergic activity. Further, these data would also provide important information
regarding the galanin-induced deficit reported in other studies. Such findings would
indicate that galanin’s role in AD may not be as closely tied to the cholirsrgfiem as
the literature suggests. Either way, the first part of our study would eroxicial
insight into galanin-ACh interactions, as well as perhaps answer sommsi@st to
galanin’s role in AD.

In experiment 2, we examined the effect that galanin and donepezil have on
learning and memory, individually as well as in combination, following admaigh of
the cholinergic neurotoxin, ethylcholine mustard aziridinium (AF64A). AF64A is a

selective cytotoxin which specifically targets cholinergic neurons and preduce
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behavioral and histological deficits in the targeted region (for revie\@ e, 1988).

The effects of a cholinergic lesion on spatial learning and memory have been qui
inconsistent with many studies finding a deficit while others have not (Waddh £984;
Lamberty et al., 1992; Nakamura et al., 1992; Opello et al., 1993; Dornan et al., 1996;
Bizon et al., 2003; Frick et al., 2004; Dashniani et al., 2009). The extent of the lesion and
the amount of toxin administered likely influence whether or not deficits areveldse
following cholinergic-specific lesions. Our study utilized a relatively dose of AF64A

in order to damage but not fully destroy the cholinergic system. Further, ounuatehd

mimic the cholinergic loss observed in early or even pre-clinical AD néa@sgia

smaller dose of the toxin.

We hypothesized that co-administration of donepezil and galanin following an
AF64A-induced cholinergic lesion would in part rescue any learning and meleficits
caused by the toxin and potentially preserve a large number of cholinergic neturons. |
may be possible that following the cholinergic lesion, galanin may presane s
cholinergic function, if it is in fact a trophic factorvivo, and donepezil may
behaviorally offset the AF64A-induced loss of ACh. If donepezil and galanin together
able to ameliorate the cognitive impairment and cell loss to a gregreeddan just
donepezil alone, then this finding would lend significant support to the argument for
developing galanin agonists as an adjunctive treatment with donepezil in AD patients
Alternatively, if donepezil and galanin administration fails to improveoper&nce or
cholinergic neuron survival, this finding would suggest the utility of galanirganists
in AD (if the increase in survival is absent, galanin may simply be exaoaglihe

cognitive impairment). Regardless of the findings, based on the overlap of the\edifc
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donepezil to ameliorate AD symptoms and the overexpression of galanin in AD, this
investigation will contribute to the understanding of each of their roles in theslers

We are genuinely surprised that there is no literature along thesarichéisis

experiment should reveal insightful information about AD and the possible wayshiécan
therapeutically treated in the future. Below we have outlined a more compuwehens

review of each of the aforementioned approaches and findings in AD.

www.manharaa.com




CHAPTER 2
REVIEW OF RELATED LITERATURE
Amyloid B Hypothesis

The A3 protein accumulates extracellularly in AD resulting in the formation of
senile plagues, which may lead to cell damage and even cell [bsgaAirst purified in
1984 from cerebrovascular amyloid protein by Glenner & Wong and from senile plaques
the next year by Masters et al. (1985), which was when its amino acid seq@snce
determined. Various mechanisms have been suggested to account for the neurotoxicity of
AP peptides and senile plaques. Various studies have discovered a disruption in calcium
homeostasis following padministration which could potentially lead to excitotoxicity
and cell loss. Further, it has been suggested that plaques may disturb surrounding
cytoskeletal elements by “squishing” nearby cells. Although the meschdoy which A3
contributes to neurodegeneration remains to be conclusively demonstrated, how the
peptide is formed has been better characterized.

AB is formed by the proteolytic processing of its precursor protein, APP. APP is
a membrane-spanning protein encoded for on chromosome 21. The APP gene product
appears to be involved with synaptic transmission, axonal transport, cell adhesion and
support, and cholesterol metabolism (for review, see Selkoe, 1994). Knockout
(elimination of the gene product) and knockdown (reduction in the relative amount of a
gene product) studies of APP have provided extensive information about its function.
APP seems to play a role in muscle development or function, and has also been
implicated in the formation of long-term potentiation (LTP), a cellular m®eggued to

be essential for learning (Douglas & Goddard, 1975; Kauer et al., 1988; Dawsgn et al
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1999; Seabrook et al., 1999; Senechal et al., 2008). Under normal conditions, the APP
protein is degraded via a series of events.

The proteolytic processing of APP results i fRagments of varying length,
depending on where APP is cleaved by specific enzymes called secrStagest(al.,

1992; Sisodia & Price, 1995). If APP is cleaved by alphasécretase, a soluble form of
APP (sAPP) is secreted which is readily absorbed and processed by lyspsuewitic
events. Cleavage hysecretase occurs in the extracellular domain of APP within fhe A
sequence, thus preventing the formation of longer, neurotoxic forms ofithephide

(Lannfelt et al., 1995). The senile plagues seen in AD are primarily made4i trel

42 amino acid f peptides, with studies showing that the 42 amino afigsAnore

neurotoxic, i.e. more damaging to neurons, than the shorter variants (Roher et al., 1996).
If APP is cleaved by bet@ and gammayl-secretases, this leads to formation of $n A
peptide 39-43 amino acids long, which is similar to the lengthggiradominantly

found in senile plagues in AD (Golde et al., 1992; Citron et al., 1996).

Initially, B-secretase (i.e. BACE) cleaves APP at its amino-terminus in the
extracellular domain which is followed by cleavageyksecretase within the
transmembrane domain (Vassar et al., 1999). BACE-1 inhibitors have been demonstrated
to inhibit B-cleavage of APP and effectively lowep Aevelsin vitro andin vivo (Hussain
et al., 2007). Inhibitors of-secretase have also been shown to red@ide\&ls in the
brain when administered to mice that overexpress a human mutant version of APP
(Dovey et al., 2001). Inhibition of either of these two secretases theoselszads to a
reduction in the amount offAbecause botp- andy-secretase are necessary in order to

cleave APP in a fashion that yields the 39-43 amino acid peptides known to aggregate

10
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and form plaques. Considerable pharmacological research is being dired¢edlaping
B- andy-secretase inhibitors as therapeutic targets in an effort to reduce plaguedoad a
perhaps even halt the progression of the disease. A great deal of researsh besral
conducted examining the genetic underpinnings of AD with a particular focus on genes
tied to the proteolytic processing oA

Genetic linkage studies have tied familial forms of AD to the gene for APP on
chromosome 21 (Goate et al., 1991; Citron et al., 1992). Over twenty mutations in the
gene have been identified to date that are thought to be responsible for ttad éamy-
onset form of the disease (Chai, 2007). Individuals with any of these mutations have a
slightly increased chance, compared to the population as a whole, of developing early-
onset AD because they have a greater amount of APP and thus producertiae A
normal individuals (Citron et al., 1992; Suzuki et al., 1994). Interestingly, almostRll AP
mutations are located within or adjacent to tifiep&ptide region of the precursor protein,
and thus may affect the proteolytic processing of APP (Schellenberg, 1@®edto
the processing of APP are the presenilin (PS) genes which have also beenathplica
autosomal dominant familial AD.

Presenilins have been linked to early-onset AD, specifically PS-1 on chromosome
14 and PS-2 on chromosome 1 (Levy-Lahad et al., 1995; Sherrington et al., 1995).
Similar to the aforementioned mutations in APP, PS mutations lead to irtciAgase
production, especially production of34, a species of the peptide known to be most
toxic to neurons and overabundant in AD (lwatsubo et al., 1994; Duff et al., 1996; Citron
et al., 1997). Investigations into PS mutations afdi&position have shown that

mutations in the PS gene increase the ratioflap #ersus A4 as compared to non-PS

11
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mutant cases of AD (Borchelt et al., 1996). This shift in the productiofigfoan have
significant consequences, as many studies have suggeste@shaggregates more
readily than A4 and is deposited early in the formation of plaques (Jarrett et al., 1993;
lwatsubo et al., 1994). Furthermore, PS mutations seem to alter AHPpoo@essing by
increasing the amount of cleavageyksecretase, and thus increasing the amount of
insoluble A3 released (DeStrooper et al., 1998; Wolfe et al., 1999). Knockout studies
with animals that do not express the PS-1 and PS-2 genes show an abolisyment of
secretase mediated cleavage of APP (Steiner et al., 1999; Yu et al., 2001).

Based on these findings and others, Wolfe et al. (1999) proposed the hypothesis
that PS itself is @-secretase, an intramembranous protease that is responsible for
cleavage of APP. Despite further evidence supporting this hypothesis, it aipe&S
andy-secretase are not the same protein even though they are highly relatesiigr at
al., 2003). Also, although PS-knockout mice seem to exhibit a complete abolishment of
y-secretase activity, these animals still produfe, peptide fragments, suggesting there
are additional enzymes with activity similantsecretase (Wilson et al., 2002). While
the discovery that these three genes (APP, PS-1, and PS-2) are linked tb Adnilia
advanced the investigation of the disorder, it is important to recognize that they
collectively only account for about 10% of all familial early-onset caSasg et al.,

1998). Given that more than 95% of AD cases occur after the age of 60, it is clear that
these genetic mutations contribute only minimally to the risk of developing the more
common variant of the disease (Holmes, 2002). With that said, much more is known

about the genetics of familial early-onset AD than about sporadic, late-onset AD

12
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One gene implicated in non-familial forms of AD is the gene coding for
Apolipoprotein E (ApoE). ApoE is a protein critical in regulating brafhp&ptide levels
and trafficking lipids throughout the brain (for review, see Holtzman, 2001). ApoE is
responsible for clearingRpeptides from the brain across the blood-brain barrier into the
peripheral circulation (LaDu et al., 1994; LaDu et al., 1995; Morikawa et al., 2095). A
peptides are normally generated at very high levels in the brain and aeel @dean
equivalent rate (Bateman et al., 2006). Thus, even small reductions in the dedrapc
could result in elevated levels opAeptides and eventual plaque formation. The
lipidation status of ApoE appears to be important with regard to how well it can bind to
AP and clear the peptide from the brain (Tokuda et al., 2000). If ApoE is in a lipidated
form, it is more effective at clearingBAhan if it is non-lipidated.

Another way that B is cleared from the brain is through a proteolytic mechanism
involving either neprilysin (NEP) (lwata et al., 2000) or insulin-degradingreaZ IDE)
(Kurochkin & Goto, 1994). Inhibition of either of these proteinases leads to a sulbstantia
elevation of A levels in the brain and increased plague deposition (Dolev and
Michaelson, 2004). Recent research suggests that ApoE facilitates thasegnz
allowing them to degradepA(Jiang et al., 2008). The ability of ApoE to cledt i& also
dependent upon the isoform or allele of ApoE (Corder et al., 1993).

ApoE has three alleles: Apal2; ApoE€3, and ApoEe4, with one or two copies
of thee4 allele leading to an increased risk of developing AD (Corder et al., 1993).
Studies with transgenic mice overexpressing APP have demonstrated AoBisof
specific effects on the ability of each allele to clefrfddm the brain. The most effective

allele at eliminating A is thee2 allele, followed by the3 allele, with the least effective

13
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being the:4 allele (Holtzman, 2004). Thus, individuals with one or sd@lleles (two
alleles being the least effective possible form) of ApoE have a lesdie®f mechanism
for clearing A3 from the brain, resulting in increased levels of the peptide (Saunders et
al., 1993). In fact, a genetic study done by Corder et al. (1993) showed that over 90% of
subjects examined who had two copies ofethallele (4/4) had AD. Almost 50% of
subjects with one copy of th8& and one copy of thetl (3/4) were affected with AD.
Only about 20% of subjects with no copies of éhallele (2/2, 3/3, or 2/3) had the
disease. Corder et al. (1993) also looked at the average age of onset in indivitiuals w
one or two copies of the! allele. The authors found that expression of it leads to a
significantly earlier age of onset, with two copies ofdhallele leading to an earlier
onset than just one copy. While the discovery of the ApoE gene and its relatipmsto A
critical to understanding AD pathogenesis, it is not a determinant of theedesehg
must be regarded carefully. A consequence of fheathology that arises due to these
mutations may be an initiation of the inflammatory response, a common neurological
occurrence in individuals with AD.

Glial cells in the brain, specifically microglia and astrocytes, eavesas
mediators of the inflammatory response when necessary, defending the CNS from
pathogens and aiding in the recovery from damage and stress (reviewed in Skaper, 2007).
AD brains exhibit extensive localized activation of both microglia and ase®ayt
response to neuronal and synaptic damage &matéumulation (reviewed in Akiyama et
al., 2000). It is likely this inflammation related to AD pathology may be both béalefic
as a mechanism to promote neuronal survival and detrimental to AD brain function and

the degeneration process (Wyss-Coray & Mucke, 2002). Recent studies have shown that
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aggregated A.is itself capable of activating the inflammatory response by activating
microglia and enhancing the synthesis and release of proinflammatokyneg (Tan et

al., 1999; Combs et al., 2001). These proinflammatory cytokines may also accelerate t
pathology and NFT formation, perhaps linking-fduced inflammation and
neurofibrillary pathology (Sheng et al., 2000; Quintanilla et al., 2004; Guo et al., 2006).
This finding would suggest that inflammation is actually advancing AD pathology and
accelerating the neuronal loss. Although microglial activation in AD mayabsed by

AP pathology, microglial activity correlates more closely with NFT pattpplHayes et

al., 2002). This relationship suggests that althougimay trigger the initial activation of
microglia, the resulting inflammatory response may be more direcétecketo tau
pathology (Blurton-Jones & LaFerla, 2006). Another study done by Guo et al. (2006)
suggests that solubleAand tau may directly interact to promote each other’s
aggregation. In fact, it has been demonstratedthatro injection of A3 activates GSK-

3B, one of the enzymes thought to be responsible for phosphorylating tau (Lovestone et
al., 1996). Thus, it is clear there is some relation betwgeandl tau pathology, but more
studies are needed to clarify the connection.

Much of the above research eventually led to the amyloid cascade hypothesis
which suggests that abnormg Aroduction and accumulation triggers the
neurodegeneration seen in AD. Hardy & Higgins (1992) proposed that depositifn of A
protein is the causative factor in AD pathology and that the NFT, neuronal loss, and
dementia that follow are a result of this deposition. They hypothesized that neuAfiox
peptides disrupt calcium homeostasis extracellularly and disrupt calcnoartaations

intracellularly. This intra-neuronal increase in calcium concentration couldtjabiebe
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what causes tau proteins within the cell to be hyperphosphorylated and form PHF, whic

are the primary component of NFT. Thus, for this interpretation of the amyloiadeasc

hypothesis to be correct, elevations if lAvels should cause hyperphosphorylation of

tau and neurofibrillary pathology to develop. This link betwefraAd tau has been

verified to some extent in animal models and in cell culture, wherfgiceAses an

increase in tau phosphorylation (Gotz et al., 2001; Lewis et al., 2001; Zheng et al., 2002).

Transgenic mice harboring mutations in both human APP and human Tau, as well as a

mutant PS-1 allele, dubbed 3xTg-AD mice, develop bdtldéposits and NFT-like

pathology (Oddo et al., 2003a). Studies using these mice have demonstratgd that A

accumulation precedes the development of tau pathology by several months, further

suggesting A may promote tau phosphorylation and aggregation (Oddo et al., 2003b).
Despite the amount of research supporting the amyloid cascade hypothesis, there

are several gaps between the hypothesis and data collected. First, thediypothe

inconsistent with the presence of senile plagues in normal aged brains sinhtsgeto t

seen in AD (Crystal et al., 1988; Katzman et al., 1988; Price et al., 199 ) dépgosits

are the catalyst for AD neurodegeneration, then we would not see individuals with no

cognitive impairment and diffuse plaque load. Secondly, in transgenic animals that

overexpress either APP or one of the PS mutations, there is no significant N&Tidarm

or neurodegeneration despite consideralfi@laque load (Hsiao et al., 1996; Takeuchi

et al., 2000). Because no AD-like pathology develops in these mice except for the

plaques, it is difficult to argue thatfAs directly causing the significant neuronal loss

seen in the disease. Another limitation of the amyloid cascade hypothests is tha

neurodegeneration and dementia occur in the absendgmédues in several diseases
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related to the tau protein (Hutton et al., 1998; Spillantini et al., 1998). Regardless of
whether or not f peptides are the causative agent in AD, it is likely that they contribute
to the cognitive symptoms seen in the disease, as well as have some efiect on t
pathogenesis in AD. Another pathogenic contributor to the neurodegeneration observed
in AD is the tau protein which is hyperphosphorylated resulting in NFTs and neuronal

loss.

Tau Hypothesis

Tau is an intracellular protein found abundantly in the central and peripheral
nervous systems and is critical for microtubule stability and assemblglleasw
microtubule flexibility (Goedert et al., 1989; Goedert et al., 1992). Microtubules are
located throughout the neuron and in the axon and are essential for neurotransmission,
axonal transport and axonal support (Paulson & McClure, 1974; Weingarten et al., 1975;
Kraemer et al., 2003). Tau is a phosphoprotein which implies that it requires
phosphorylation, or the addition of a phosphate group, in order for it to become activated
(Butler & Shelanski, 1986). Tau is partially phosphorylated in the normal brain and this
phosphorylation may regulate microtubule stability and assembly. This microtubule
regulation appears to happen by reducing tau’s binding to tubulin, a protein that makes up
microtubules, and reducing the promotion of microtubule assembly (Hasegawa, 2004).
Thus, the phosphorylation of tau plays a pivotal role in regulating microtubule production
by reducing the amount of microtubule assembly and decreasing the abilitytoftiad

to tubulin.
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In AD, the tau protein is hyperphosphorylated, which leads to the destruction of
microtubule assemblies via the aforementioned mechanisms (Grundke-Igbal et &l., 1986
The degradation of microtubules may cause impaired axonal transport and paskibly ¢
death (Kosik et al., 1986). Tau hyperphosphorylation renders tau unable to bind to
microtubules, an event proposed to be responsible for self-assembly into the paired
helical filaments (PHFs) (Goedert et al., 1988; Bramblett et al., 1993; YoSHhidaa,

1993). These PHFs, which are primarily made up of hyperphosphorylated tau, correlate
strongly with neuronal death in AD (Gomez-Isla et al., 1997). Also, whergas A
pathology is relatively specific to AD, NFT formation occurs in other des#dsorders
related to tau, collectively referred to as tauopathies.

In 1998, several mutations in the tau gene were discovered in families with
frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), a
related but distinct neurodegenerative disease, indicating genetic eviddree tha
abnormalities may be sufficient to lead to neurodegeneration (Hong et al., 18&8) H
et al., 1998; Poorkaj et al., 1998; Spillantini et al., 1998). This discovery led to the
production of many different transgenic lines of mice with tau mutations. Ondéicpeci
line, the P301L mice, shows significant age-dependent NFT formation, memory
impairment, and neuron loss (Lewis et al., 2000; Ramsden et al., 2005). Although there is
significant neurodegeneration in these animals, they do not develofgratt#ology,
implying that tau mutation or tangle formation is not sufficient on its own to caske
plaques in an animal model of AD. These findings provide strong evidence that tau may
induce neuronal loss in the absence pf But also suggest thaBAlaque formation may

lie upstream of tau, at least for AD.

18

www.manaraa.com



Consistent with the findings thaf3fplaque burden does not correlate well with
the severity of dementia, but NFT formation does, is the finding that NFTs can be
differentiated into neuropathological stages in AD. Braak & Braak (1991) rdporte
detailed pathological studies about the distribution of plaques and tangles in autopsy
brains of demented and non-demented individuals. They showedptlipasition was
of little significance in relation to neuropathological staging, wheredsNkhibited a
neuroanatomical distribution pattern permitting the differentiation of agestof disease
progression in AD. Tangles are first observed in the entorhinal cortex wheomake
loss occurs the earliest, and are closely related to the initial memornynmapain AD,
whereas R deposits are not found in the hippocampal formation until the late stages of
the disease (Hasegawa, 2004). Another post-mortem study showed that both NFTs and
neuronal loss increased in parallel with the duration of AD, although the amount of
neuronal loss was five or six times larger than the amount of tangle actomula
(Gomez-lIsla et al., 1997). In contrast, the authors also found that the amount of plaques
and A3 accumulation were not related to neuronal loss, the number of NFTs, or the
duration of the disease.

Despite the recent attention the tau hypothesis has received, it hasdimaita
similar to the A hypothesis. Foremost is the finding that NFTs are extremely common
and perhaps universal in the nucleus basalis of Meynert, a basal forebrainickgion r
cholinergic fibers, in non-demented aged individuals (Beach et al., 1998). Secondly,
because animal models of tauopathies fail to deveppathology or the global neuronal
loss seen in AD, it is difficult to claim that tau aggregation and NFTs are cdhsing

disease. Another possible explanation for the significant neuronal loss and degenera
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seen in AD is related to the cholinergic hypothesis and the loss of cholinergic neurons i

areas important for learning and memory.

Cholinergic Hypothesis

The cholinergic deficit in AD is the earliest and most frequently reproduced
finding, specifically the profound reduction in choline acetyltransferase TCa&tivity
(Davies & Maloney, 1976; Bowen et al., 1982). ChAT is the enzyme responsible for
synthesizing acetylcholine (ACh), and its decreased activity leads teectdowunts of
available ACh in the brain, specifically in the hippocampus and neocortey éeailr,
1977; Davies, 1979). The finding that cholinergic cell loss is associated withedenpe
of plagues in non-demented aged individuals suggests that the loss of cholinergic neurons
precedes the clinical diagnosis of AD (Beach et al., 1997). Furthermore, shatioasd
that the severity of the dementia in AD correlates well with the exteodihergic loss
and the reduction in ChAT activity in the cortex (Perry et al., 1981). Cholinergic los
occurs first and foremost in the basal forebrain where CBF neurons detevienaearly
in the disease progression (Whitehouse et al., 1982; Bowen et al., 1982; Beach et al.,
2000). ACh has been implicated in different cognitive functions such as learning and
memory (Whitehouse, 1967; Cox & Tye, 1973; Valentino & Dingledine, 1981; Spencer
& Lal, 1983; Spencer et al., 1985; Woolf, 1996). Once ACh is released, it can bind to
either of two receptor subtypes: nicotinic acetylcholine receptors oramfisc
acetylcholine receptors (Role & Berg, 1996; reviewed in Wevers & Schroder, 1999 and

Ishii & Kurachi, 2003).
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Nicotinic receptors are ionotropic receptors (receptors that can open ion shannel
when ACh binds to them) while muscarinic receptors are metabotropic receptors
(receptors that activate a G-protein and trigger intracellular evéras ACh binds,
including the opening of multiple ion channels). There appears to be a selective loss of
ACh receptors in the cortex and hippocampus in AD, and it seems to be more pronounced
for nicotinic receptors (Flynn & Mash, 1986; Perry et al., 1995; Wevers et al). 2000

Nicotinic receptor activation using nicotine produces a significant increalse in t
amount of phosphorylated tau bathvitro and in 3xTg-AD mice (Hellstrom-Lindahl et
al., 2000; Oddo et al., 2005). The exact mechanism of how this increase in
phosphorylation occurs remains unclear, but it may be a result of increasathdaicls
due to overactivation of the nicotinic receptors. Nicotonic receptors are one of owly a fe
ionotropic receptors in the brain that allow an influx of calcium ions when ACh binds
(McGehee et al., 1995; Role & Berg, 1996). This increase in intracellutnmmamnay
activate different calcium-dependent kinases, such as B8KE338MAP kinase, which
may be responsible for phosphorylating tau (Oddo et al., 2005). Nicotinic necepto
activation also appears to have an effect frd@posits in the braimn vitro studies have
shown that nicotine seems to inhibip Abril formation and also disrupts already formed
fibrils (Salomon et al., 1996; Zeng et al., 2001; Ono et al., 2002). This would suggest that
in the absence of ACh, the formation of fibrils is allowed to progress at a more tapid ra
Studies using transgenic mice, specifically mice that overexpress hunPacafiéd
Tg2576, showed a dramatic decrease bothpiplaque burden and the levels of
insoluble A340 and A342 after chronic administration of nicotine for a period of five and

a half months (Nordberg et al., 2002). It is difficult to determine what effetb$keof
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nicotinic receptors has on tau phosphorylation afidiéposits in AD, and more studies
are necessary to elucidate the relationships.

Muscarinic receptors, specifically the M1 receptor subtype, are hightessed
in the cerebral cortex and hippocampus, and seem to be particularly relevamdoym
function in AD (Anagnostaras et al., 2003). The M1 receptor has been shown to decrease
tau phosphorylation suggesting that decreased cholinergic activity may lead to
destabilization of the microtubule network and eventual tangle forméatieriro studies
using cholinergic M1 agonists showed that the muscarinic-activated decrease of t
phosphorylation was both time and dose dependent (Sadot et al.,|h9&&).studies
using 3xTg-AD mice also showed a reduction in tau phosphorylation after admioistrati
of a muscarinic agonist and conversely showed increased tau phosphorylation after
treatment with an M1 antagonist (Caccamo et al., 2006). Prewvieitso findings found
that M1 receptor agonists decrease tau phosphorylation by the reduction gf GSK3
activity (Forlenza et al., 2000), which appears to be the mechanism by which tau
phosphorylation was decreased in the 3xTg-AD mice. Muscarinic receptotiact@iso
appears to reducepAproduction and increase the secretion of soluble APP (Buxbaum et
al., 1992). In the 3xTg-AD mice, an M1 agonist reduc@dldposition in the
hippocampus and cortex, and ameliorated cognitive deficits in a spatial mestory ta
(Caccamo et al., 2006). This finding that muscarinic activation regulates AR girac
(Nitsch et al., 1992) formed the basis for the hypothesis that AChE inhibitors omay sl
disease progression by reducing production (Inestrosa et al., 1996).

AChE inhibitors were developed as a result of the cholinergic hypothesis in order

to increase cholinergic tone in individuals with AD (Davis et al., 1978; Bartus, 1979;
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Bartus et al., 1982). AChE is primarily responsible for the breakdown of ACh into
choline and acetic acid. AChE has also been implicated ipl#&que formation and
appears to have the ability to accelerafefdrmation and deposition in AD (Inestrosa et
al., 1996). Therefore, by inhibiting the enzymatic activity of AChE, it magdssible to
reduce A plaque formation and ameliorate AD symptomology. AChE inhibitors increase
the amount of ACh available in the synapse as well as enhance and prolong its action on
ACh receptors (Harvey & Rowan, 1990). AChE inhibitors have been approved for use in
mild to moderate AD and have been shown to improve cognitive deficits (Rogers et al.,
1998; Rosler et al., 1999; Tariot et al., 2000). One of the most widely prescribed and used
AChE inhibitors is donepezil.

Donepezil hydrochloride is a piperidine-based, non-competitive, reversible
inhibitor of AChE with high central nervous system specificity and a longidarat
action (Yamanishi et al., 1991). It has been demonstrated to be a well-toletajeldadr
improves cognitive performance and global function in mild to moderate AD patients
(Rogers et al., 1996; Rogers et al., 1998). Donepezil significantly increases kxaa
ACh concentrations both dose- and time-dependently (Kosasa et al., 1999). Furthermore,
donepezil was able to significantly improve a deficit in spatial learning @mdomy
induced in rats with lesions of the medial septum, a pathway by which cholinergic
neurons project to the hippocampus, at a relatively low dose of 0.5 mg/kg. The rescue of
the spatial deficit was almost to the level of the control animals in a Maates waze
(MWM) spatial learning task (Ogura et al., 2000). Scopolamine, a cholinerigigamist,
has been shown to produce learning impairments in rodents (Ogren et al., 1998; Elvander

et al., 2004). Donepezil, once again at a low dose of 0.5 mg/kg, was able to significantly
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decrease the scopolamine-induced deficit in rats in an 8-arm radial arm rapagah
learning and memory task (Ogura et al., 2000).

Many animal models of AD showfApathology and a few even show tau
pathology, but thus far none have been able to replicate the global neuronal losedexhibit
in AD. Nevertheless, administration of donepezil to different AD models provides
valuable insight into the cellular and molecular effects of the drug, assvekamines
the effect it has on behavioral deficits. One such animal model involves lesioes of th
entorhinal cortex, a part of the brain which provides inputs to the hippocampus, using
ibotenic acid, a compound that produces non-specific excitotoxic lesions. Although the
lesion does not model the specific cholinergic loss which is a hallmark of AD, itis a
valuable tool to study hippocampal learning and memory deficits. One study
administered donepezil following an ibotenic acid lesion and found that donepezil was
able to partially rescue the lesion-induced deficit in the MWM (Spowarisvhg & van
der Staay, 2005).

Further animal models are the Tg2576 mice and APP23 mice that overexpress
human APP containing the Swedish double mutation and display age-related cognitive
deficits and plaque load (Hsiao et al., 1996; Sturchler-Pierrat et al., 1997gKally
2003). Briefly, the gene coding for APP is mutated to overexpress the protein and the
mice eventually developAplagues around 6 months of age (Sturchler-Pierrat et al.,
1997). A study with the Tg2576 mice showed that donepezil administration dose-
dependently (0.1, 0.3, or 1.0 mg/kg) reduced the cognitive deficit in a spatial memory
task (Dong et al., 2005). Another study investigated the effect of donepezil adations

(0.3 mg/kg) in the APP23 transgenic mice and found that it was able to rescue some of
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the deficits in the MWM (Van Dam et al., 2005). In a follow-up study using the APP23
mice, Van Dam et al. (2008) found that donepezil may have disease-modifying. effects
After chronic donepezil treatment (0.27 mg/kg per day for 8 weeks), aninpedenced
a 3 week wash-out period where no drug was given in order to determinenifein¢atas
able to improve spatial memory in the MWM after the drug was no longer active.
Donepezil significantly improved performance of the APP23 mice both in acquigiiibn a
retention of spatial memory in the MWM. This possible disease-modifyingt &ffe
donepezil may be due to the relation between AChE gnidination that we previously
reviewed. Because AChE has been implicated in amyloid plaque formatioind$aest
al., 1996), the inhibition of AChE may lead to reducdddpathology. In fact, donepezil
invitro reduced AChE-inducedfpAaggregation by 22% (Bartolini et al., 2003). Further
evidence fromn vitro studies found donepezil, but not other AChE inhibitors, had
neuroprotective effects on cell culture models of neuronal injury (Akasofy 20aB).
Another possible explanation for donepezil's possible disease-modifying ability
is that in addition to its action on AChE, it antagonizes N-methyl-D-aspaiBBA)
receptors in the brain (Wang et al., 1999; Moriguchi et al., 2005). NMDA recepgors ar
activated by glutamate, an excitatory neurotransmitter, and when NMoersit
allows calcium ions into the cell. An overabundance of calcium ions can lead to
excitotoxicity and neuronal death which is what may be occurring in AD fL&ca
Newhouse, 1957; Mattson et al., 1992). Thus, because donepezil is able to reduce the
activity of the NMDA receptor, it also may reduce excitotoxicity. Thigtexaxic
inhibition may be mediated through nicotinic ACh receptors followed by specifisdgna

which reduce NMDA receptor activity (Takada-Takatori et al., 2006).dst&gly,
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donepezil has also been found to improve cognitive performance in healthy young rats
(Cutuli et al., 2008), which suggests donepezil may act as a cognitive enhancing drug in
normal animals as well as in animals with cognitive deficits.

Donepezil is clearly able to ameliorate deficits related to AD pathaotogsrly
and middle stages of the disease in AD patients and in animal models (Rogers et al.,
2000). It increases cholinergic tone and activity, likely compensaiimipé profound
deterioration of CBF neurons in AD. These findings also indicate why in tbe $édiges
of AD donepezil has been found to be less effective, as the overall loss of cholinergic
neurons may progress to a level beyond the capacity of an AChE inhibitor to improve.
Although it is not yet evident why these CBF neurons begin dying in AD, one possible

explanation is related to calcium levels and excitotoxicity.

Excitotoxicity Approach

Glutamate is an excitatory neurotransmitter pervasively exgréssmighout the
central nervous system (Harvey & Mcllwain, 1968). It can act on eitheramot
receptors such as AMPA, kainate or NMDA receptors, or metabotropic recepiors
are coupled to G-proteins (Ishida & Neyton, 1985; O’'Brien & Fischbach, 1986; Cull-
Candy & Usowicz, 1987; Jahr & Stevens, 1987). Binding of glutamate to NMDA
receptors leads to an influx of calcium and excitation (MacDermott et al., Ba8@juse
glutamate is a potent excitatory transmitter, excessive amounts or proletegeskrcan
elicit excessive excitation in neurons that may lead to cell death (Kusi@svhouse,
1957; Olney & Ho, 1970). Chronic exposure to moderately elevated glutamate levels or

hyperactivity of glutamate receptors, which is what may be occurringany
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neurodegenerative diseases as well as cerebral ischemia, can letsdtty anflux of
calcium which has been shown to be toxic for the cell (reviewed in Mattson & Chan,
2003). This calcium-induced cell death, also called excitotoxicity, has beestigated
in AD and may play a role in the progressive degeneration of neurons.

Calcium levels in AD appear to be elevated, potentially resulting imogoxicity
and cell death (Peterson et al., 1985; Peterson & Goldman, 1986). Calcium levels are
increased in neurons that contain NFTs as compared with tangle-free neunorasy (&4
al., 1992). The increased levels of calcium may precede tangle formatexhdrathe
finding that levels of calcium/calmodulin-dependent protein kinase 1l (C3iikd most
abundant kinase in the brain and dependent on calcium for activation, are increased in
hippocampal neurons which are vulnerable to degeneration (McKee et al., 1990).
Calcium levels may also be affected bfy peptidesin vitro studies show that
application of A peptide increases the vulnerability of cortical neurons to glutamate
toxicity (Mattson et al., 1992)n vivo, the toxicity caused by Rinjection into the
hippocampus or nucleus basalis of Meynert is reduced by NMDA antagonists, showing
that the toxicity is in part related to glutamatergic activity gday et al., 1999; Miguel-
Hidalgo et al., 2002). These studies suggest that glutamate receptor actidtion a
exposure to A peptides together are more injurious than either insult alone (Canzoniero
& Snider, 2005). In addition to increasing vulnerability to calcium influx through
glutamate receptors, specifically NMDABA&an also increase resting calcium levels
both intra- and extracellularly (Mattson et al., 1992). In an attempt to addeess t
excitotoxic damage caused by increased calcium levels and overaatigititamate

receptors, NMDA-receptor antagonists have been developed.
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Memantine is an uncompetitive NMDA antagonist that has been approved for use
in moderate to severe cases of AD dementia (Ditzler, 1991; Winblad & Poritis, 1999;
Tariot et al., 2004). What makes memantine an uncompetitive antagonist is that it
becomes more effective at blocking NMDA receptors the more the recbptmmse
activated. In other words, under normal physiological conditions, the NMDA receptor
will not be antagonized by memantine because the drug will remain inactnen e
NMDA receptor is overactivated by glutamate, memantine becomes ektreffective
at returning NMDA activity to a normal state. At a fixed concentrationerhantine, its
ability to block the NMDA receptor increased as the concentration of NMDA setlea
(Chen et al., 1992). For this reason memantine is usually only administered italgésr s
of AD when calcium concentrations may be sufficiently elevated and tigesiable to
exert its unigue uncompetitive NMDA blockade. Another way of possibly reduning t
excitotoxicity seen in AD is via the endogenous peptide galanin, which has been shown

to exhibit neuroprotective effects.

Galanin Literature
Galanin is a 29 amino acid (30 in humans) neuropeptide, first isolated from
porcine intestine by Tatemoto et al. (1983). It is widely expressed throughout the
mammalian nervous system with galaninergic neurons in areas such astiralc
cortex, nucleus basalis of Meynert, hippocampus, amygdala, and locus coeruleus
(Kordower et al., 1992; Perez et al., 2001). Galanin inhibits several classical
neurotransmitters including glutamate, serotonin, norepinephrine, and ACh (Daltar e

1989; Pieribone et al., 1995; Robinson et al., 1996; Kinney et al., 1998; Ogren et al.,

28

www.manaraa.com



1998; Xu et al., 1998). In the basal forebrain of rodents, galanin co-localizes with
cholinergic neurons within the medial septum/diagonal band complex (Melander et al.,
1985; Melander et al., 1986; Miller et al., 1998). In the human basal forebrain, there
exists a small population of non-cholinergic galaninergic interneurons and a dense
galaninergic fiber plexus that innervates CBF neurons (Mufson et al., 1993; Bowser e
al., 1997). In fact, it was found that galanin immunoreactivity is present in ~50-70% of
CBF neurons (Melander et al., 1985). These findings led to the hypothesial&ma g
may mediate the cholinergic system related to cognitive function (Mufson et al), 998
vitro studies have demonstrated that galanin reduces ACh release and ACth-elicite
excitation and also inhibits LTP in hippocampal neurons (Fisone et al., 1987; Dutar et a
1989; Palazzi et al., 1991; Sakurai et al., 1996). A diffarevitro study found that
galanin actually has the ability to excite cholinergic neurons, but furihdiestare
needed to clarify this excitatory role for galanin (Jhamandas et al., 200R)o work
has shown that galanin administered into the hippocampus, lateral ventricles, or basal
forebrain impairs cognitive performance on spatial learning and mensis itarats
(McDonald et al., 1998; Wrenn & Crawley, 2001; Kinney et al., 2003). Furthermore,
mice that overexpress galanin (GalOE) display cognitive deficitactamistic of AD
(Steiner et al., 2001). Taken together, these data suggest that galanin may inbdsathe
forebrain and hippocampus to regulate cognitive processes.

Alternatively, galanin also appears to play a neurotrophic or neuroprotecéve rol
in the brain (Holmes et al., 2000; O’'Meara et al., 2000; Mahoney et al., 2003; Elliot-Hunt
et al., 2004, Elliot-Hunt et al., 2007). Following trauma or injury to the central nervous

system, galanin expression is up-regulated in many brain regions (€oales1990).
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Galanin also acts as a survival and growth-promoting factor to neurons in both the centr
and peripheral nervous systems (Holmes et al., 2000; O’'Meara et al., 2000; Mahoney et
al., 2003). Zini et al. (1993) found that galanin reduces glutamate releasébye50

rat hippocampal slices. Because glutamate is the principle exciteorgtransmitter in

the brain, and it can be responsible for calcium-induced excitotoxicity, the abilit

galanin to reduce glutamate release classifies it as a trophoc. falttot-Hunt et al.

(2004) also found that galanin promotes hippocampal neuron survival in a number of
vitro models of excitotoxic injury. Using hippocampal slices from transgenic &ima
either over-expressing galanin (GalOE) or galanin knockout (GalK@npigalvas shown

to exert a protective effect after administration of glutamate or staunespan agent

which inhibits protein kinase activity and can lead to apoptosis, or programmed cell
death. Galanin has also been shown to protect neurons from the toxic effegtsof A

vitro, further exhibiting its neuroprotective capacity (Ding et al., 2006). Due to this

ability to reduce excitotoxic damage and protect from neuronal injury, galgomsts

have significant implications as anti-epileptic agents. In order to fustiggrstand

galanin and its possible therapeutic effects, we must first examieedstors which

would ultimately be the targets of any drugs.

Galanin receptors are G-protein-coupled metabotropic receptors, whictecti
second messenger pathways after the binding of a ligand (Hulting et al., 198&tWa
al., 1994; Branchek et al., 1998). The first galanin receptor (GAL-R1is eoupled
receptor, which belongs to a family of receptors with mostly inhibitorpastiGAL-

R1’s are found throughout the human brain, particularly in the cortex, hippocampus,

thalamus, and amygdala (Habert-Ortoli et al., 1994). Activation of GAL-RIE lea
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inhibition of adenylyl cyclase and cyclic adenosine monophosphate (CAMP), both of
which are signal transduction mechanisms crucial for learning and m@moaesses,
especially consolidation of memory (Palazzi et al., 1991; Karelson & Lal@@s;

Wang et al., 1998; lismaa & Shine, 1999; Kinney et al., 2003).

The second galanin receptor subtype (GAL-R2) can be gfsal@ype or a (3
subtype, and can be either excitatory or inhibitory (Fathi et al., 1998; Wittay 20@0).
GAL-R2’s are found in areas of the human brain similar to GAL-R1’s including the
cortex, hippocampus, amygdala, thalamus, and cerebellum (Borowsky et al., 18D8; Fat
et al., 1998). A key difference between the two receptor subtypes which may expla
their different mechanisms of action is that they are found in different pahs of t
hippocampus and exert different effects when activated. The ventral hippocampus
contains significantly more GAL-R1’s than the dorsal hippocampus which nemtaire
GAL-R2’'s (Melander et al., 1985; Melander et al., 1986; Fisone et al., 1987; O’Donnell
et al., 1999). Accordingly, when galanin is injected directly into the vempabcampus
where there is higher GAL-R1 expression, learning and memory was impaired in the
Morris water task. Conversely, when galanin is injected into the dorsal hipposano
learning deficits were detected (Ogren et al., 1999). GAL-R2 activatiomiepioe
increase the levels of inositol phosphates and intracellular calcium in ¢elesyl
leading to increased LTP and synaptic plasticity (Fathi et al., 1998; Kolaket.,

1998; Wang et al., 1998; Wittau et al., 2000). Thus, GAL-R2'’s appear to activate
phospholipase C and protein kinase C, initiating a signal transduction pathway which

promotes neurotransmission and facilitates learning and memory. Furtherotioedica
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of the GAL-R2 protects the hippocampus from neuronal damage, implicating this
receptor subtype in the trophic role galanin plays (Elliot-Hunt et al., 2007).

The third galanin receptor subtype (GAL-R3) appears to be similar to GAb-R
functionality, coupling to the Gprotein, however the prevalence of GAL-R3 within the
CNS is much less extensive and considerably more studies are needed on tlus recept
(Kolakowski et al., 1998; Smith et al., 1998). Thus, depending on which galanin receptor
is activated, the effect may be inhibitory or excitatory; a distinctioessary to make in
order to understand what is occurring in AD. In AD, the overexpression of galapin ma
be inhibitory, further exacerbating cognitive deficits, or it may be neotegtive,
attempting to save CBF neurons from any further damage.

AD patients exhibit characteristic memory loss and learning defgpecially in
later stages of the disease. When galanin is centrally administere@mdsiaticauses
learning and memory deficits, specifically deficits in the consobdadf memory
(Kinney et al., 2003). Because of this finding and others like it, it can be said that it i
possible that the overexpression of galanin seen in AD is contributing to theagniti
impairments exhibited in the disease. The mechanism by which galanicomtayute to
the cognitive impairment has not been clarified, although many findings suggest |
through interactions with the cholinergic system (Fisone et al., 1987; Chan-Pday, 1
Dutar et al., 1989; Mufson et al., 1993).

The loss of CBF neurons in AD is accompanied by an increase in the activity of
the surviving cholinergic neurons (McDonald & Crawley, 1997). Because of galanin’s
role as an inhibitory neuromodulator, this increase in cholinergic activity maaase

galaninergic activity, thus inhibiting the remaining cholinergic neurorso(iéi et al.,
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1987; Chan-Palay, 1988; Chan-Palay, 1990; Mufson et al., 1993; Bowser et al., 1997).
The inhibition of surviving cholinergic neurons may then lead to the learning and
memory problems characteristic of late-stage AD, because of the afdrened

importance of acetylcholine in learning and attentional processes. Thig ihe

supported by findings that galanin expression progressively increasedastie

forebrain in AD (Mufson et al., 2000). Galaninergic fibers form a dense plexus
surrounding surviving CBF neurons, reaching concentrations twice that of agjeetha
controls (Beal et al., 1990). Although there is evidence of increased galanaergity

early in the disease progression (Perez et al., 2002), it appears that galanin
hyperinnervation of CBF neurons only occurs in the late stage of the disease (Cha
Palay, 1988; Mufson et al., 1993; Bowser et al., 1997; Mufson et al., 2000; Counts et al.,
2006). These findings are consistent with the notion that galanin overexpression is
triggered by neuronal damage, suggesting galanin hyperinnervation of CBF neurons
represents a neuronal survival mechanism (Gabriel et al., 1995; Hartonian et al., 2002;
Shen et al., 2003).

In a recent study examining tissue from AD brains, it was found that CBF neurons
that are hyperinnervated by galanin show a significant increase in choline
acetyltransferase (ChAT) expression as compared to CBF neurons that have no GA
hyperinnervation (Counts et al., 2008). The increase in ChAT due to galaninergic
hyperinnervation observed in this study suggests a neuroprotective roleafungal
AD. In a study using saporin to produce a cholinergic-specific lesion in taé bas
forebrain of rats, it was found that galanin immunoreactivity within and adjéz¢he

lesion was significantly increased as compared to control animals, anteffiepersisted
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long after the treatment (Hartonian et al., 2002). Thus, damage to cholinergic neurons
would appear to be sufficient to increase galanin expression long-tertropbia

response to the damage. However, in Down’s syndrome which also produces extensive
CBF degeneration, galanin does not hyperinnervate surviving cholinergic neurons
(Mufson et al., 1993; Sendera et al., 2000). These findings suggest that CBF neuron loss
alone is insufficient to trigger the galanin plasticity response seen .ii A@efore, it

may be that galanin is overexpressed in AD due to other factors such gsplagdes or

the NFT or the excitotoxicity. Whether galanin is protecting or inhibitingr GBurons in

AD is still unknown, but it is clear the neuropeptide needs to be studied further in order to

fully understand its role in this neurodegenerative disease.

Hypothesis and Implications

Many theories have been proposed to explain the neurodegeneration which occurs
in AD, but none so far have been able to account for the massive neuronal loss and
progressive cognitive decline seen in the disease. Galanin may provideaa lamkiin
the causal chain of AD, and thus the current study has potential implicationtufer f
Alzheimer’s research. The effects of the co-administration of dorlegpekzgalanin
should provide valuable insight into AD pathology and further supplement the literature
related to ACh and galanin.

In a series of experiments we attempted to determineahgmkxerts its effects
on learning and memory via modulation of cholinergic tone in an intacbue system,
as well as to examine its effects in an animal model ofwkin co-administered with a

drug that is used to treat the disorder. In experiment 1, we inaestighe effects of
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galanin when co-administered with donepezil in a spatial legutask, the Morris water
maze, in an effort to clarify the mechanism by which galampairs learning and
memory. If the galanin-induced deficit is altered by the addiiodonepezil, it is likely
galanin is impairing learning and memory in part via inhibition éblimergic
mechanisms. However, if donepezil has no effect on the galanin-indatied, then the
deficit is likely unrelated to cholinergic alterations. Readgiia from our lab indicate a
drastic reduction in CREB (cCAMP-response element binding proteirgpplooylation, a
critical event for the induction of LTP and learning and men{@ymb et al., 1986;
Dash et al., 1990; Bartsch et al., 1998), following galanin administrfiomey et al.,
2009). In addition, these changes have been linked to the learningnmaptsrobserved
following exogenous galanin administration (Kinney et al., 2003). Therefae
hypothesized that donepezil would be unable to rescue the galanin-irdkfast] and
that galanin’s inhibition of CREB phosphorylation may be principagponsible for the
learning deficit.

There is a paucity of evidence on the role galanin may playwiip a
cholinergic lesion with regard to both the survivability of cholinergeurons and
learning and memory. In experiment 2, we examined the effedsnepezil and galanin
following the central administration of a cholinergic-specific oéaxin, AF64A,
designed to mimic an early or even preclinical stage of AD. é&Viptevious
investigations have been carried out on either the effectivenes€ldtls following a
cholinergic lesion or the potential role of galanin in AD, thereehbeen no studies
examining both galanin and AChEIs in a model consistent with AD.tNéheor not

galanin functions in a neuroprotective capacity following a choliodegion as well as
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how it affects learning following damage are key conceptshiinze yet to be addressed.
In addition, we sought to determine what effect the co-adminestraf donepezil and
galanin would have in a compromised cholinergic system. We hypottiesize
donepezil would rescue any lesion-induced learning and memagytsiély increasing
the amount of available ACh and restoring the functioning of the clngiingystem to a
physiologically normative level. We further hypothesized thiaioagh galanin may not
rescue the lesion-induced impairment, it may potentially recheceegree of cell loss in
these animals if it does act as a trophic factovivo. Finally, we expected that co-
administration of donepezil and galanin would lead to a partial regdbe learning and
memory deficits caused by AF64A. However, we hypothesized thathhmstory effects

of galanin would not allow a complete reversal of the lesion-induced deficits.

36

www.manaraa.com



CHAPTER 3
MATERIALS AND METHODS
Subjects
Ninety adult male Sprague-Dawley rats (forty for Experiment 1 andfdifty
Experiment 2) approximately three months of age and weighing between 250 and 350 g
were used. Rats were maintained in a temperature and humidity (22 + 1°C) controlled
facility, with food and water available ad libitum, on a 12:12 light/dark cycle slightat
7:00 a.m. Animals were housed in pairs until the time of the surgery, after whych the
were individually housed. All procedures were approved by the University of Nevada
Las Vegas Institutional Animal Care and Use Committee and carried owtordance

with NIH guidelines for the appropriate care and use of animals.

Surgery

Surgeries were performed as described previously by Kinney et al. (2003).
Briefly, all animals underwent stereotaxic surgery under aseptic corsldnd ketamine
(66 mg/kg; Henry Schein Inc, Sparks, NV) and dexmedetomidine (0.2 mg/kg; Henry
Schein Inc, Sparks, NV) anesthesia. A guide cannula 1.4 cm in length, 24-ganlgessta
steel hypodermic tubing (Plastics One, Roanoke, VA) was implanted intighhéateral
ventricle at coordinates 0.5 mm posterior, 1.2 mm lateral to bregma, and 3.5 mm ventral
to the surface of the skull (Paxinos & Watson, 1986). The cannula was secured to the
skull using stainless steel screws and dental acrylic. A 31-gaugeveiglenserted to

close the guide cannula. Rats were administered an analgesic (Buprenorphine, 0.05
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mg/kg; Henry Schein Inc, Sparks, NV) immediately following surgeryelsfar two

days post-surgery to minimize post-operative pain.

Drug Treatments

Rat galanin 1-29 (Bachem Americas, Inc. Torrance, CA) was dissolved in 0.9%
physiological saline vehicle at a concentration of 3 nmol/3 pl. Donepezbdtyidride
(Tecoland Corporation, Edison, NJ) was dissolved in 0.9% physiological saline to a
concentration of 0.3 mg/kg. AF64A was dissolved in NaOh to a concentration of 0.34
mg/ml and pH was adjusted to between 7.0 and 7.4. The toxin was administered into the
right lateral ventricle, 2 ul total, over the course of one minute with the injechay leé
in for an additional minute to ensure complete distribution of the solution. Subjects were
randomly assigned to different treatment groups, each of which consistethiby pre-
treatment administered intra-peritoneally (i.p. 1 ml/kg) and a dagynrent administered
intracerebroventricularly (i.c.v. 3 ul infused). The pre-treatment was @@eaninutes
prior to behavioral testing and the treatment was given 5 minutes before.t8sting
was administered as a control for i.p. pre-treatments and artificedrospinal fluid
(ACSF) was administered as a control for i.c.v. treatments.

For the first experiment, a control group received a saline pre-treatnteat a
treatment of ACSF. The remaining three groups received daily adraiitas of either a
donepezil pre-treatment and a treatment of ACSF, a saline pre-treatmentraatment
of galanin, or a pre-treatment of donepezil and a treatment of galanin. In Exge2ime
four of the five groups received a one-time infusion of AF64A an average of four days

before behavioral testing began. A control group received a sham-lesion, using ACSF
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instead of the toxin, and a pre-treatment of saline followed by treatment wBk.Ahe

remaining toxin-infused groups received daily administrations of eithex-treatment of

saline and a treatment of ACSF, pre-treatment of donepezil and a treatfrAG8F,

pre-treatment of saline and a treatment of galanin, or pre-treatment peddrand a

treatment of galanin. Table 1 outlines the drug administrations for each group i

experiments 1 and 2.

Table 1
Experiment 1
Pre-treatment Treatment
Saline ACSF
Donepezil ACSF
Saline Galanin
Donepezil Galanin
Experiment 2
Before Testing Pre-treatment Treatment
Sham lesion Saline ACSF
Lesion Saline ACSF
Lesion Donepezil ACSF
Lesion Saline Galanin
Lesion Donepezil Galanin
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Morris Water Task

The Morris water task was conducted in a circular tank, 1.8 m in diameter
and 76 cm in height, made of white polyethylene 4.7 mm in thickness (San Diego
Instruments, San Diego, CA). Tap water, 48 cm deep, was maintained at a terapzdra
25°C and made opaque by the addition of white non-toxic paint (Fresco Tempera Paint,
Rich Art Color Company, Northvale, NJ), and changed every other day. The escape
platform, a square platform 10 cm in diameter made of clear plastic, was pidbed i
center of one of the four quadrants (target quadrant), 30 cm from the inside \Wwell of t
maze and 1.5 cm below the surface of the water. For visible platform trainingg a larg
black and white cover was attached to the top of the platform and protruded 2 cm above
the water.

Trials were recorded and captured using a video tracking system (Sarart

Diego Instruments, San Diego, CA) recorded from a Sony Handycam cameected
to a Cobalt Instruments computer. Data collected for each trial consistedhck aftthe
animal which included the latency to locate the platform, speed of swimming, and
thigmotaxis. On the probe trial the tracking system also recorded the amauome of t
subjects spent in each of the four quadrants of the maze, as well as the numbexr of time
the animal’s path crossed over the previous platform location and its analogous location

in each quadrant.

Behavioral Testing

Animals received AF64A toxin infusions an average of four days before testing

began in order to alter the cholinergic system consistent with early sfa§yBs Daily
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injections of donepezil or saline were administered 20 minutes prior to statirag,tes
while galanin or ACSF was centrally infused 5 minutes before testing beganctSubje
were then taken individually from the colony room to a dedicated testing room cogtaini
the water maze, a computer desk, a table with the heating cage, and largeigeomet
shapes positioned on each of the four walls, all serving as distal spatial cues.wWdee ra
placed into the maze at one of three randomized locations, in the center of a quadrant that
did not contain the escape platform (non-target quadrant). The rat was albosveditin
the maze until it reached the hidden platform and placed its forepaws on therpl#tfor
after 60 seconds the animal did not locate the hidden platform, it was guided to the
platform by the experimenter. The rat was given 20 seconds on the platform tacrient
distal spatial cues and was then placed under a heat lamp for a total of 30 seconds
between trials. Three additional trials were conducted in an identibadfiagor a total
of four training trials per day. Following the fourth trial, the animal wasddand then
returned to its home cage. The training trials for the hidden platform were cahduotte
control subjects reached a latency criterion of less than 20 seconds for exypdriamd
less than 13 seconds for experiment 2. A more stringent criterion was set famexper
2 in order to ensure lesion animals had sufficient opportunity to learn the task. A probe
trial was conducted five hours following achievement of this criterion. For priaks tr
the rat was placed in the maze in the same fashion as during training, but fiee esca
platform was absent. The single probe trial was 60 seconds in duration, after which the
rat was dried and returned to its home cage.

The day after completion of the probe trial, a visible platform training psbtoc

was used. A visible platform that extends above the surface of the waten(azeacue)
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was placed into the maze instead of the hidden platform. Five trials were conducted f
each animal in the same fashion as during the hidden platform training, with the
exception that the platform location was changed on each trial. Visible platéoning
was conducted in order to detect any deficits in visual ability and motor functioty Thi
minutes following completion of the last visible training trial, animals wereameaty

euthanized.

Tissue Collection

Animals were humanely euthanized via carbon dioxide asphyxiation and half
were transcardially perfused while the other half were immediagelgpitated for rapid
removal of the brain. Transcardiac perfusions involved perfusing saline through the
vascular system via the left ventricle followed by perfusion of 8% paraldeimgde to
fix the tissue. Brains were then removed and placed in 8% paraformaldehyde at 4° C for
48 hours followed by 24 hours in a 30% sucrose solution in PBS (phosphate-buffered
saline). Finally, brains were placed in 5% sucrose in PBS until immunohistoatyemist
experiments. For rats that did not receive transcardiac perfusions, brairgpuweihe
removed and cortex, hippocampi, and cerebellum were dissected out and flash frozen in

dry ice. The dissected tissue was stored at -80° C until western blotting exsrim

SDS-PAGE (Western Blots)
A total of twenty-four animals were randomly selected for the SDSHPAG
experiments which were only conducted with subjects from experiment 2. Wasue

homogenized in a non-denaturing lysis buffer consisting of 1X RIPA buffer (Cell
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Signaling; 20 mM Tris-HCL pH 7.5, 150 mM NaCL, 1 mMN&aDTA, 1 mM EGTA,
1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, i-mM
glycerophosphate, 1 mM MO, and 1 pg/ml leupeptin), 1 mM DTT, 1 mM
phenylmethylsulfonyl fluoride (PMSF), 20 pg/ml aprotinin and 0.1% sodium dodecy!
sulfate (SDS). Lysates were centrifuged at 15,000 x g for 15 minutes at 4°C, the
supernatant was collected, and a protein assay to determine concentratp@rfomamed
using the biciconinic acid method (BCA, Pierce, Rockford, IL). Samples (20 ug) we
separated on 10% SDS-PAGE gels according to the method of Laemmli (1970). Proteins
were then electro-transferred to nitropure 45 micron nitrocellulose membvaies
were blocked in 5% milk in Tris-buffered saline 0.05% Tween (TBST) and sodid® azi
overnight.

Individual membranes were incubated with rabbit anti-VAChT (vesicular ACh
transporter) antibody (1:750; Sigma-Aldrich, St. Louis, MO) or rabbitf&attin
antibody as control (1:1000; Sigma-Aldrich, St. Louis, MO) in TBST-5% milk plus
sodium azide for 2 hours at room temperature. Detection of specific binding was
performed by incubation with HRP-conjugated secondary antibodies (1:5000, Vector) f
1 hour at room temperature. Specific signals were detected with Super SegtdPidb
Chemiluminescent Substrate (Pierce, Rockford, IL) and images wersdened for
densitometry, using BioSpectrum Imaging System (UVP, Upland, CA) amdgeve
intensity was obtained for each sample using ImageJ software (Natistiaites of

Health).
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Immunohistochemistry

Twenty-three animals, all from experiment 2, were dedicated to
immunohistochemistry experiments. Whole brains were sectioned at a #5akrizZ0um
on a cryostat and sections were stored at 4° C in PBS until the immunohistochemistry
experiments. In order to verify correct cannula placement, sections veenénexl to see
if cannulae terminated in the lateral ventricles. Animals whose cannulae detmotate
in the lateral ventricle were removed from the analyses. Sections \aeezlph plastic
wells and remained free floating until the completion of the immunohistochemistry
procedure. Sections were initially blocked for 45 minutes in a blocking solution
containing 5% normal goat serum (NGS), 0.05% Tween, and PBS. Sections were then
incubated overnight at room temperature in primary antibody solution containing 5%
NGS, 0.3% Tween, 0.05% sodium azide, and primary polyclonal antibody raised in
rabbit directed against the VAChT (1:750 dilution). All wells were then rinsedimes
for five minutes each in an excess of wash solution (PBS, 0.2% NGS, and 0.05% Tween)
with gentle rotation. Following the washes, sections underwent a procedure loglabe
with 3, 3’ diaminobenzidine (DAB). Sections were incubated for 45 minutes in a
biotinylated secondary antibody solution containing 5% NGS, PBS, and biotinylated
secondary antibody (1:500 dilution; Elite Vectastain ABC kit, Burlingandg, C
Following five washes, sections were washed for 15 minutes in a hydrogeidper
solution (3% hydrogen peroxide, 1% sodium azide, and wash solution) to eliminate non-
specific binding and then washed three more times. Sections were theneddobdb
minutes with ABC reaction in order to amplify the signal (Elite Vectass@8C Kkit,

Burlingame, CA) followed by another five washes. Finally, syringeréld DAB was
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placed into the wells while the sections were free-floating for four miaungshen
washed away using wash solution. Sections were then mounted onto slides for imaging

under the microscope.

Cell Counting
To determine the extent of cholinergic neuron loss in subjects from all groups
administered the AF64A or sham lesion, slides were examined at an objective of 10X or
20X using a Zeiss Axioskop Il Plus microscope (Carl Zeiss Microlmagmag, |
Thornwood, NY). Cell counts of VAChT-positive neurons within the basal forebrain and
hippocampus were performed in a consistent manner across sections and groups. A
minimum of six sections per animal with three to four animals per group wasditib

determine relative cholinergic abundance expressed as a percent of theoslrals.

Statistical Analysis
Hidden platform training data were analyzed using the SPSS sthtsiittvare
package by a repeated measures analysis of variance (ANOVA). Visititerpl&raining
and probe trial data were analyzed by one-way ANOVA. Western Blot deredity and
cell count data were also analyzed by one-way ANOVA. Tukey post-hoc asomsaof

treatment groups were performed following a significant ANOVA.
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CHAPTER 4
RESULTS
Experiment 1

Morris Water Maze

An analysis of each group’s latency to reach the hidden platform in the

Morris water maze revealed no significant differences among the groyps<PB.208,
p=.891; see figure 1A). Similarly, there were no significant differences athergroups
in latency to find the visible platform {k3:= 1.197, p=0.314; see figure 1A). Speed of
swimming was analyzed to investigate any differences in motoricyadoitibng the
groups. No significant differences were found among the groups with regard to swim
speed during hidden trainings(4= 0.975, p=.407; see figure 1B) or visible training
(Fs131= 1.731, p=0.164; see figure 1B). Thigmotaxis, a measurement of how much time
subjects spent around the outer perimeter of the maze, is typically used asueenoé
anxiety. During hidden platform training, no significant differences wbsemwed among
the groups in thigmotaxis {f24= 0.173, p=.915; see figure 1C). However, during visible
platform training, significant differences were observed in thigmotaxig{¥ 3.114,
p<.05; Tukey post-hocs revealed that the donepezil-galanin group had significantly
higher thigmotaxis than the saline-ACSF group, p<.05; see figure 1C).

Following hidden platform training, the platform was removed and a probe trial
was conducted to assess spatial learning (see figure 1D). A lack of aaigrprobe
trial indicates a group did not learn the spatial location of the platform. Suinjelots
saline-ACSF group spent significantly more time in the target quadransvegish of the

three non-target quadrants indicating a selective preference for taelteagion (i 32=
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27.912, p<.01; Tukey post-hoc comparisons of target quadrant versus all non-target
guadrants, p<.01). Rats administered donepezil and ACSF also displayed a significant
search (F24= 11.834, p<.01; Tukey post-hoc comparisons of target versus all non-target
guadrants, p<.01). Animals that received saline and galanin did not show a selective
search as not all non-target quadrants were significant versus the tapget§H59,

p<.01; Tukey post-hocs revealed target was only significant versus quadrant 1, p<.01,
and non-significant versus quadrants 2 and 3, p>.05) which is consistent with previous
studies with galanin. Interestingly, in the group given donepezil and galanidid-aist

show a preference for the target quadraggdF 2.350, p=.094).

Experiment 2

Morris Water Maze

Administration of the cholinergic neurotoxin alone or in combination with galanin
and/or donepezil did not affect the animals’ latencies to find the hidden platform in the
Morris water maze as is evidenced by the observation of no significant mifésramong
the groups (FF167= 0.555, p=.696; see figure 2A). Interestingly, during visible platform
training there was a significant difference in latency to reach theptatfF; 15,= 2.769,
p<.05; Tukey post-hocs revealed that the lesion plus donepezil and galanin led to a
significantly higher latency to reach the visible platform as compared o cbrrols,
p<.05; see figure 2A). No swim speed differences were observed in either hiddeg trai
(F4.167= 2.181, p=.073) or visible platform training,(fs7= 0.521, p=.721) among the
groups (see figure 2B). When thigmotaxis was analyzed, a significéeredite was
found among the groups during hidden platform trainingd#&= 2.760, p<.05; Tukey

post-hocs showed the lesion plus donepezil and galanin produced significantly higher
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Figure 1. Water maze performance in experiment 1 following donepezil and/or galanin
administration. (A) Latency for hidden and visible platform training. No Stgmt
differences were found among treatments during either condition (p>.05). (Byildo s
speed differences were detected among groups in either hidden or visiblerplatfor
training (p>.05). (C) An examination of time spent around the outer perimeter of the
maze revealed a significant difference in thigmotaxis during visibleoptatfraining in

the donepezil-galanin group (p<.05) versus controls but no differences during hidden
training. (D) Probe trial data show that only saline controls (p<.01) and donepezil-
administered animals (p<.01) spent significantly more time in the target quadraus
each non-target quadrant indicative of a selective search. Groups adndrgsieren or
donepezil and galanin did not display a selective search (p>.05).
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thigmotaxis as compared to the sham controls, p<.05; see figure 2C). Similarlyg, du
visible platform training significant differences were found amondrtreats (&7 157=
3.603, p<.01; Tukey post-hocs showed no significant differences compared to sham
controls; however, the lesion plus donepezil and galanin produced significantly higher
thigmotaxis as compared to the lesion group, the lesion plus donepezil, and the lesion
plus galanin, ps<.05; see figure 2C).

Figure 2D depicts probe trial performance among the groups administéed eit
AF64A or a sham lesion. Sham controls demonstrated a selective search @esnicesbi
by their significant probe trial g=2= 59.444, p<.01; Tukey post-hoc comparisons of
target versus all non-target quadrants, p<.01). Animals administered the lesi@mlab
showed a selective probe triak@;= 13.231, p<.01; Tukey post-hoc comparisons of
target versus all non-target quadrants, p<.01). Surprisingly, rats infused laitinga
following the lesion demonstrated a significant search as wel£F38.027, p<.01;
Tukey post-hoc comparisons of target versus all non-target quadrants, p<.01). Equally
surprising was that the lesion plus donepezil and galanin group also exhibited a
significant search on the probe triag g= 44.361, p<.01; Tukey post-hoc comparisons
of target versus non-target quadrants, p<.01). Interestingly, the group admdhiste
donepezil and ACSF following the lesion did not display a selective search cheing t
probe trial (i 25= 5.345, p<.01; Tukey post-hocs revealed target was only significant

versus quadrant 3, p<.01, and non-significant versus quadrants 1 and 2, p>.05).
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Figure 2. Water maze performance in experiment 2 following a lesion and combinations
of donepezil and galanin. (A) No differences were observed during hidden platform
training although the lesion plus donepezil and galanin group displayed a significantly
increased latency to find the visible platform (p<.05) versus sham controldo(B)
significant differences in swim speed were observed in either hidden or visititapl
training (p>.05). (C) A significantly increased thigmotaxis was observed ilegloa

plus donepezil and galanin group during hidden platform training (p<.05) versus sham
controls and during visible platform training (p<.05) versus lesion, lesion plus donepezil
and lesion plus galanin groups but not sham controls. (D) Probe trial data indicate that
sham controls (p<.01), lesion (p<.01), lesion plus galanin (p<.01), and lesion plus
donepezil and galanin (p<.01) groups all spent significantly more time in the target
guadrant versus each non-target quadrant. However, animals administered theussion pl
donepezil did not display a selective search indicating they did not learn the location of
the platform (analysis of target versus non-target quadrants, p>.05).
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Western Blotting

Western Blots were analyzed for image intensity and statistics edogrped to
examine differences among treatments. Representative blots of fromeéal @@ shown
in figure 3A. While there are indications of differences among groups, no sighifica
differences among treatments were observed in protein levels of VAChTaorth&
(Fs31= 1.637, p=.190; see figure 3A). A representative blot for the hippocampus is shown
in figure 3B. Similar to cortex samples, although differences exist ameaigients, no
significant differences were found among groups in the hippocampgis=(E.435,
p=.243; see figure 3B).

Cell Counts

Cell counts performed under light microscopy of DAB-stained tissue were done
in the left and right basal forebrain region and left and right hippocampi to dssess t
number of cholinergic neurons. A significant difference was observed amongtips g
in the total number of VAChT-positive cells counted in the left and right basak&one
(F4203= 3.464, p<.01; Tukey post-hocs revealed that the lesion plus galanin group had
significantly fewer cholinergic-positive neurons in the basal forebrainrapared to
sham controls, p<.05; see figure 4D). The lesion alone group displayed a non-significant
trend toward a loss of cholinergic cells as compared to sham controls, havekderot
reach significance, p=.095. Representative images of basal forebrain focahants,
lesion, and lesion plus galanin groups are depicted in figure 4 (A, B, and C, re$pective
Images for lesion plus donepezil and lesion plus donepezil and galanin groups are not

shown due to the lack of significant differences between these groups and controls. Ce
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counts performed in the hippocampus revealed no significant differences among

treatments (F74= 0.613, p=.655; data not shown).

-
+
— O
+ + +
A B %) — o (@] [@)]
- .
120% 300%

Hippocampus

250% A

200%

60% - 150% -

40% 100%

20%

50%

0%

Relative VACKT protein level (as percent control)
Relative VACHT protein level (as percent control)

: . 0%
Sham Lesion Les+ Les+ Les+ Sham Lesion L|es+ Les+ Les+

Don Gal Don + Don Gal Don +
Gal Gal

Figure 3. Western Blot analyses. (A) Representative blots of samples frofrottial

cortex along with the relative VAChT protein levels in each group compared to sham
controls. Analyses of Western Blot densitometry revealed no significantetitfes

among the groups (p>.05). (B) Representative blots of hippocampal samples along with
the relative protein levels of VAChT compared to sham controls. No significant
differences were observed among the groups (p>.05). S: sham controls; L:lesion;
lesion + donepezil; L + G: lesion + galanin; L + D + G: lesion + donepezil fiigala
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Figure 4. Immunohistochemical cell counts within DAB-stained basal forebrain sections
(A) Representative image of a sham control brain. (B) Representatige oha lesion
animal. (C) Representative image of a rat from the lesion plus galanin grown (D)
analysis of cell counts performed within the basal forebrain revealed tHasiie plus
galanin group had significantly fewer VAChT-positive cells than sham conpel8X).

All images were obtained at a 10X magnification.
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CHAPTER 5
SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS
Discussion of Results

In the above studies we investigated the interaction of galanirthend
cholinergic system with particular relevance to AD. Herepnesent the first behavioral
evidence that the galanin-induced learning and memory impairmékelis not related
to galanin modulating cholinergic signaling. Experiment 1 demoestrahat the
previously observed deficit in spatial learning and memory dugatanin was not
rescued or even modified by the administration of the AChE inhiddoepezil. Several
previous investigations have made a case for the impairments produgeathbin being
driven by altering cholinergic tone (Melander et al., 1985; Fistrad., 1987; Dutar et
al., 1989; Mufson et al., 1998). This connection has also been used\etettssupport
the models of galanin overexpression in AD. If the galanin-indwdéegtation of
cholinergic signaling were in part responsible for its leardnd memory deficits, the
increase in cholinergic tone produced by donepezil should have altered and/or riescued t
galanin-induced impairment.

In a recent study investigating the mechanisms responsibléhéo galanin
learning deficit, it was found that galanin significantly redu€REB phosphorylation
(Kinney et al., 2009). Further, another investigation found that the axtraiion of
forskolin (an AC activator) was able to rescue the galanin-inddegdit (Kinney et. al.
2003), providing further support that the spatial learning and memoryitsiafice to
galanin may be mediated by its inhibition of AC activity and ddwasn

phosphorylation of CREB. Taken together, these data suggest thavéisdgation of
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galanin deficits should focus more specifically on the intracellsignaling cascades
modulated by galanin. However, the possibility still remains thetcholinergic cell loss
and overexpression of galanin observed in AD result in a completely differentiscenar
In order to examine the relationship between cholinergic cell loss simildrat
is observed in AD and increased galanin levels, a cholinergic neurotoxin neslge
administered in experiment 2. When the interactions of donepezil and galanin were
examined in a compromised cholinergic system, a completely different behavaiiie
emerged. Most notably, the galanin-induced deficit, which has been well chaeatter
tasks of spatial learning and memory, was absent following the cholinesigio.l&n
addition, donepezil administration following the lesion produced a deficit in the probe
trial indicating these animals did not learn the spatial location of the plaffdrisiresult
was somewhat surprising as the majority of the literature suggests tleaisingr
cholinergic tone is beneficial to an organism. Importantly, co-admin@traf donepezil
and galanin following the cholinergic lesion did not produce a learning and memory
impairment even though higher thigmotaxis was seen throughout training inains gr
Further, a deficit in latency to reach the visible platform was observed in thiesdsa
which can largely be accounted for by the increase in thigmotaxis observed dubley vis
training. Because this group did not show any impairment in hidden platfornmdyaini
the probe trial, this visible platform deficit is not likely due to any visuomotor
impairments. Interestingly, animals co-administered donepezil aadigah experiment
1 also displayed increased thigmotaxis during visible platform training stigg@n

anxiety phenotype may be present following co-administration of these compounds.
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Future studies may be able to clarify any anxiogenic effects delatbe interaction of
galanin and donepezil.
In the group administered a cholinergic lesion followed by saline and ACSF, no
spatial learning and memory deficit was detected. Although this ressilhla@
unexpected, the data on spatial learning and memory following a cholinergicdes
fairly inconsistent (Walsh et al., 1984; Lamberty et al., 1992; Nakamura et al., 1992;
Opello et al., 1993; Dornan et al., 1996; Bizon et al., 2003; Frick et al., 2004; Dashniani
et al., 2009). Whether or not a learning deficit is observed is likely tied to the ektent
the cholinergic lesion and the particular neurotoxin employed. The unilatersierad
lesion administered in the current study was selected to induce mild damage tathe ba
forebrain, in an effort to mimic early or even preclinical AD. Thus, because our
cholinergic insult was relatively small, the spatial learning tasizetilmay not have
been sensitive enough to detect any behavioral changes due to the lesion. However, it
clear the lesion itself did have a physiological and behavioral impact afebts of
galanin and donepezil become radically different following the lesion versus imalnor
non-lesioned animal. Further, although not significant, there was a marked reduction i
the amount of cholinergic-positive cells in the basal forebrain region of lesionedlsinim
The results from the Western Blot and immunohistochemistry (IHC) expeement
are a little less clear. Although disagreements exist on the acafrapantitative IHC
techniques, the IHC experiments disclose useful and interesting informajarding
neurobiological changes. Based on our data, there is a significant reduchieramdunt
of VAChT-positive cells in the basal forebrain region in animals administeesiésion

plus galanin as compared to sham controls. This finding is contrary to what wesexpect
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given the trophic effects that have been observed following galanin administration
vitro (Zini et al., 1993; Holmes et al., 2000; O’'Meara et al., 2000; Mahoney et al., 2003;
Elliot-Hunt et al., 2007). Further, because galanin administration followinigsre did
not produce a learning and memory deficit in the water maze, this signiechrdtion in
cholinergic-positive cells is even more surprising. The possibilitysttst although
galanin may not exhibit any neuroprotective qualitre@vo, its effects in a
compromised cholinergic system are different than in a normal, non-lesioned. anima
More data related to tha vivo effects of galanin in animal models relevant to the
specific disease state may be necessary to clarify this gahahioced change.

There is also a non-significant trend (p=.095) towards a reduction in cholinergic
cells in lesioned animals. Although this reduction did not reach significance igrthip,
it is clear the lesion did alter the amount of VAChT-positive cells in the barsddr&in.
Interestingly, in the lesion plus donepezil and lesion plus donepezil and galanin groups,
there is very little change in the amount of cholinergic neurons as compared to sham
controls. Whether this lack of a reduction in cholinergic cells in these groupsgefiey
neuroprotective properties of donepezil is difficult to determine with the data at hand
However, previous studies have discovered possible neuroprotective effects of donepezil
(Takada-Takatori et al., 2006; Akasofu et al., 2008), raising the possibility that da
donepezil administration may have negated the effects of the lesion in the studgnt
Interestingly, impairments in water maze learning were observed indbp gr
administered donepezil following the lesion. These results suggest compenbatmgc

following the lesion in combination with donepezil administration may have disrupted
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spatial memory. Further possibilities regarding the behavioral defittits group are
outlined below.

An analysis of the densitometry of the Western blots revealed no significant
differences among the groups in either the cortex or the hippocampus. iimggyest
however, the trends in the VAChT protein levels in the cortex seem to mirror the group
differences observed following the IHC cell counts. The consistency observezkthetw
procedures in the differences among groups reinforces the validity of the §inding
Further, although there is a large amount of variability within each graeqr, tcénds are
observable in the hippocampus as well. It is interesting to note that these trendsoend t
opposed to the data from the Western blot cortex samples and the IHC basal forebrain
cell counts. Spatial learning and memory in the Morris water maze is a hippolgampal
dependent task. Therefore, the shift in VAChT protein levels in the hippocampus in some
of these groups could potentially account for why a deficit is observed in tbe pdss
donepezil group while none is found in the lesion plus galanin group. Specifically, the
Western data indicate that the lesion plus donepezil group has lower levels of VAChT
protein in the hippocampus than the lesion and lesion plus galanin groups. This difference
may play a role in the lesion plus donepezil group deficit, as further outlined bdlew. T
large variability observed within each group precludes the discovery ofgmfycsint
differences among these groups, and a replication of these findings megdssary
before any definitive conclusions can be reached regarding the neurobioédtactd of
donepezil and/or galanin following a lesion.

The data from the above experiments indicate an interesting shift in tbis efffe

galanin as well as the interaction of donepezil and galanin. In experiment 1, donepez
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alone did not alter performance while galanin impaired spatial learning andrgnem
consistent with previous investigations. Interestingly, the galanin defsitsiill present
when donepezil was co-administered indicating the galanin learning impaisi&ety
not related to the suppression of cholinergic signaling. However, in the presence of a
cholinergic lesion these effects were inverted. Following perturbation chtiimergic
system as in AD, the same dose of donepezil produced a spatial learning impairme
while the same concentration of galanin (from the same batch) or co-adatiomnsof
galanin and donepezil did not lead to a learning impairment. Even more compelling is
that the cholinergic lesion alone was insufficient to impair learning and ngemttre
water maze. These data suggest that there are differential effecth gataotin and
donepezil depending on the level of cholinergic tone. Further, it is also interesting to not
that while the galanin deficit does not appear to be tied directly to the modulation of
ACh, following the reduction of cholinergic tone as in AD, galanin does not produce an
impairment. In addition, although administration of donepezil following the lesion
impaired water maze performance, when galanin was co-administered with dipnepez
this donepezil-induced deficit vanished. These data suggest that galanin may have a
beneficial role in a compromised cholinergic system similar to what iswaakan AD.
These findings also support a more detailed investigation of galanin aictigjgcific
disease state models as opposed to previous investigations of exogenous galanin
administered to normal subjects.

The role of galanin in AD is currently unknown with many investigators
suggesting it may be exacerbating cognitive symptoms while others sappudntial

trophic role for galanin in the disorder. Interestingly, galanin has been showoteotpr
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neurons from the toxic effects opADiIng et al., 2006; Cheng & Yu, 2010; Cui et al.,
2010) and has also recently been demonstrated to refemeldced learning and

memory deficits in the Morris water maze (Cheng & Yu, 2010). These studiesstigge
overexpression of galanin may serve a protective role in AD in an attempt teremtint

the neurotoxic effects of (A In the current study when cholinergic functioning was
altered, galanin may also display protective properties similar to weegisfollowing

A infusion. However, the histological data did not reveal any neuroprotective qualities
of galanin, indicating the lack of a behavioral deficit may be unrelated to galanin’s
trophic properties.

The cholinergic lesion also altered the behavioral outcome of donepezil
administration, producing a deficit where none was observed without the lesion. This
finding suggests neurological changes due to the lesion, perhaps compensatorg,n natur
followed by the inhibition of AChE may have created a scenario where the maneas
cholinergic tone impaired spatial learning. In fact, there are reportalsitatiemonstrate
spatial learning deficits due to increasing cholinergic tone (Burale, 2004; Elvander
et al., 2004; Sabolek et al., 2005), particularly in the retrieval of previously learned
information (Rogers & Kesner, 2004). This retrieval deficit is especidiyaat in our
study considering donepezil administration following the cholinergic lesipained
probe trial performance in the Morris water maze. However, further studies@ssary
to confirm and elucidate the mechanisms driving this donepezil-induced change. In
addition, no deficit was observed following co-administration of donepezil and gakani
rats with a compromised cholinergic system, suggesting whatever gdfanin has

following a lesion is sufficient to rescue the donepezil-induced deficitptigsible that
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the increase in cholinergic tone caused by donepezil was reduced by galanin
administration (Fisone et al., 1987; Dutar et al., 1989; Palazzi et al., 1991), which
restored ACh levels to a level consistent with other groups and eliminated the denepezil
induced deficit. Clearly, the interactions between galanin and the cholinestggasy
become more complex following a cholinergic lesion mimicking early AD and mtae da
may be required before any definitive interpretations can be made.

Regardless of whether or not galanin plays a neuroprotectivinral®, based on
the findings from experiment 1, the behavioral deficits attribeitedalanin are more
likely due to its inhibition of CREB phosphorylation (Kinney et al., 200@) aot tied to
suppression of cholinergic signaling. Further, it may be necedsargaddress the
behavioral consequences of galanin’s modulation of cholinergic functioning, abspeci
early or preclinical AD when ACh levels begin to fall and cageitdeficits begin to
arise. A potentially more relevant approach to galanin in AD tmayto address the
mechanisms responsible for its overexpression in AD. This appnoaghprovide
valuable data regarding the mechanisms involved in the pathology ofF@bexample,
several groups have argued that calcium alterations may be tdieboth the
neurofibrillary tangles and Aplagues observed in AD (McKee et al., 1990; Hardy &
Higgins, 1992; Mattson et al., 1992; Murray et al., 1992; Querfurth & Selka@;
Green & Laferla, 2008; Lopez et al., 2008; Vale et al., 2010). Asrémsdriptional
regulation of galanin is on a calcium-dependent switch, specifiaeafyREB-dependent
transcription factor (Zachariou et al., 2001), the overexpressionarfigahay be tied to
other pathological findings in AD. Changes in calcium levels comsigtebserved in

AD (Peterson et al., 1985; Landfield et al., 1989; Thibault & Laltifie996; Raza et al.,
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2007; Thibault et al., 2007; Bezprozvanny and Mattson, 2008; Bojarski et al., 2008)
could potentially lead to increased CREB activation and an upregulatigalanin. In
addition, as galanin has demonstrated neuroprotection against calducedndamage
(Palazzi et al., 1991; Mazarati et al., 2000; Arabadzisz et al., R0&£grati et al., 2006;
Endoh et al.,, 2008), these changes in calcium levels alone couldtdeadale
overexpression of galanin in AD.

The potential upregulation of galanin following calcium dysegulateges the
possibility of utilizing galanin as a marker in animal models p&dhaps AD as well. If
the overexpression of galanin observed in AD and animal models of ARk@a&
EIGhotny, 2010) is due to changes in calcium levels, then measurirlg tdvgalanin
may prove fruitful in the detection of A vivo. The development of galanin receptor
ligands for clinical use has proven challenging. Therefore stigagions of galanin in
AD may be better served by examining levels of galaninraar&er for cell damage or
cell loss due to calcium alterations.

The role of galanin in inhibiting the evoked release of classical neurotransmitter
and preventing neuronal hyperactivity has been well documented (Dutar et al., 1989;
Pieribone et al., 1995; Kinney et al., 1998; Xu et al., 1998). However, galanin’s inhibition
of CREB phosphorylation provides a possible alternative explanation for its potential
neuroprotective properties in a damaged nervous system. By inhibiting AC and
downstream phosphorylation of CREB, galanin may be conserving vital resources by
halting the activation of several transcription factors. This reduction irctiatisn may
allow a struggling nervous system to allocate resources wheresagcesthout

expending unwanted energy, which could be critical in a neurodegenerative ésmtule
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as AD. In the current study, galanin did not produce a spatial learning and memory
impairment when administered to an animal with a compromised cholinergic system
This finding is unique as previous investigations with several learning and sn&asks

have typically demonstrated learning impairments following galaninrasiration.

Together with results from previous studies indicating galanin inhibits CREB
phosphorylation (Kinney et al., 2009), these findings could potentially support a role for
galanin in the preservation of a damaged nervous system in response to cellulaasnsults
may be occurring in AD.

The cognitive effects of galanin overexpression in AD are currently unknown
while many investigators suggest galanin may be exacerbatingicegteficits by
suppressing cholinergic tone. The current study emphasizes that the spatiagland
memory impairments following galanin administration are likely distirarnf
cholinergic modulation. Previous work indicates perhaps more attention instead should
be paid to galanin’s inhibition of CREB phosphorylation as a potential modulator of
learning and memory (Kinney et al., 2003; Kinney et al., 2009). Further, the data suggest
galanin administration may be beneficial for spatial learning in an amwdel of AD
mimicking cholinergic loss as well as in other studies following infusionfopéptide
(Cheng & Yu, 2010). Although more studies are necessary to elucidate any
neuroprotective effects of galanmvivo, our data argue for a reappraisal of the role of
galanin in learning and memory as well as AD. These findings may alsotithpautility
of administering galanin receptor ligands both in AD as well as other neuroderyenerat

disorders.
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